Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612586

RESUMO

BAHD acyltransferases are involved in catalyzing and regulating the secondary metabolism in plants. Despite this, the members of BAHD family and their functions have not been reported in the Taxus species. In this study, a total of 123 TwBAHD acyltransferases from Taxus wallichiana var. mairei genome were identified and divided into six clades based on phylogenetic analysis, of which Clade VI contained a Taxus-specific branch of 52 members potentially involved in taxol biosynthesis. Most TwBAHDs from the same clade shared similar conserved motifs and gene structures. Besides the typical conserved motifs within the BAHD family, the YPLAGR motif was also conserved in multiple clades of T. mairei. Moreover, only one pair of tandem duplicate genes was found on chromosome 1, with a Ka/Ks ratio < 1, indicating that the function of duplicate genes did not differentiate significantly. RNA-seq analysis revealed different expression patterns of TwBAHDs in MeJA induction and tissue-specific expression experiments. Several TwBAHD genes in the Taxus-specific branch were highly expressed in different tissues of T. mairei, suggesting an important role in the taxol pathway. This study provides comprehensive information for the TwBAHD gene family and sets up a basis for its potential functions.


Assuntos
Taxus , Humanos , Filogenia , Taxus/genética , Aciltransferases , Cromossomos Humanos Par 1 , Paclitaxel
2.
Plants (Basel) ; 13(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276767

RESUMO

Some wild cotton species are remarkably tolerant to salt stress, and hence represent valuable resources for improving salt tolerance of the domesticated allotetraploid species Gossypium hirsutum L. Here, we first detected salt-induced stress changes in physiological and biochemical indexes of G. anomalum, a wild African diploid cotton species. Under 350 mmol/L NaCl treatment, the photosynthetic parameters declined significantly, whereas hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents increased. Catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activity and proline (PRO) content also significantly increased, reaching peak values at different stages of salt stress. We used RNA-Seq to characterize 15,476 differentially expressed genes in G. anomalum roots after 6, 12, 24, 72, and 144 h of salt stress. Gene Ontology enrichment analysis revealed these genes to be related to sequence-specific DNA and iron ion binding and oxidoreductase, peroxidase, antioxidant, and transferase activity; meanwhile, the top enriched pathways from the Kyoto Encyclopedia of Genes and Genomes database were plant hormone signal transduction, phenylpropanoid biosynthesis, fatty acid degradation, carotenoid biosynthesis, zeatin biosynthesis, starch and sucrose metabolism, and MAPK signaling. A total of 1231 transcription factors were found to be expressed in response to salt stress, representing ERF, MYB, WRKY, NAC, C2H2, bZIP, and HD-ZIP families. Nine candidate genes were validated by quantitative real-time PCR and their expression patterns were found to be consistent with the RNA-Seq data. These data promise to significantly advance our understanding of the molecular response to salt stress in Gossypium spp., with potential value for breeding applications.

3.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279223

RESUMO

Colored-leaf poplar is increasingly popular due to its great ornamental values and application prospects. However, the photosynthetic characteristics of these colored-leaf cultivars have not been well understood. In this study, the photosynthetic differences between green-leaf poplar Populus deltoids Linn. "2025" (L2025) and colored-leaf cultivars 'Zhonghong poplar' (ZHP), 'Quanhong poplar' (QHP), and 'Caihong poplar' (CHP) were investigated on several levels, including chloroplast ultrastructure observation, photosynthetic physiological characteristics, and expression analysis of key genes. The results showed that the photosynthetic performance of ZHP was basically consistent with that of L2025, while the ranges of light energy absorption and efficiency of light energy utilization decreased to different degrees in CHP and QHP. A relatively low water use efficiency and high dark respiration rate were observed in QHP, suggesting a relatively weak environmental adaptability. The differences in chloroplast structure in different colored-leaf poplars were further observed by transmission electron microscopy. The disorganization of thylakoid in CHP was considered an important reason, resulting in a significant decrease in chlorophyll content compared with other poplar cultivars. Interestingly, CHP exhibited extremely high photosynthetic electron transport activity and photochemical efficiency, which were conductive to maintaining its relatively high photosynthetic performance. The actual quantum yield of PSII photochemistry of ZHP was basically the same as that of QHP, while the relatively high photosynthetic performance indexes in ZHP suggested a more optimized photosynthetic apparatus, which was crucial for the improvement of photosynthetic efficiency. The differential expressions of a series of key genes in different colored-leaf poplars provided a reasonable explanation for anthocyanin accumulation and specific photosynthetic processes.


Assuntos
Populus , Populus/metabolismo , Fotossíntese/fisiologia , Clorofila/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/metabolismo
4.
Foods ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38137247

RESUMO

The flavour and mouthfeel of peaches are crucial qualities of peach germplasm resources that significantly influence consumer preferences. In this study, we utilized 212 peach germplasm resources from the Nanjing Peach Resource Repository, National Fruit Germplasm facility, Jiangsu Academy of Agricultural Sciences as materials for sensory analysis, electronic nose analysis, and composition analysis via high-performance liquid chromatography (HPLC). In the sensory analysis, we divided 212 peach germplasms into three clusters based on hierarchical cluster analysis (d = 5). No.27, No.151, and No.46 emerged as the most representative of these clusters. The electronic nose was used to conduct an evaluation of the aroma profiles of the 212 peach germplasms, revealing that the primary distinguishing factors of peach aroma can be attributed to three sensors: W1S (methane), W1W (terpenes and organosulfur compounds), and W5S (hydrocarbons and aromatic compounds). The primary differences in the aromatic substances were characterized by sensors W2W (aromatic compounds, sulphur, and chlorine compounds) and W1C (aromatic benzene). The HPLC analysis indicated that the persistence of peach sensory characteristics was positively correlated with acids and sourness and negatively correlated with sweetness and the ratio of sugar to acids. The overall impression of the 212 peach germplasms revealed a negative correlation with acids, while a positive correlation was observed between the overall impression and the ratio of sugar to acids. Therefore, this study substantially contributes to the preliminary screening of the analysed specific characteristics of peach germplasms such as No.27, No.46, No.151, and No.211. These selections may provide valuable information for the potential creation of superior germplasm resources.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37944983

RESUMO

Objective: This study aimed to investigate the relationship between the thickness of the uterine muscle layer at placenta attachment and postpartum hemorrhage, and to evaluate the predictive value of this thickness in identifying high-risk patients. It provides a theoretical basis for early identification and screening of pregnant women at high risk of postpartum hemorrhage, and reduces the occurrence of serious complications of postpartum hemorrhage. Method: A total of 378 pregnant women admitted to the Second People's Hospital of Shantou City from January to December 2021 were enrolled in this study. High-risk patients were defined as those with a uterine muscle layer thickness at placenta attachment greater than 2.5 cm, as measured by transabdominal ultrasound. Postpartum blood loss and hemoglobin changes were measured before and after delivery. Stratified analysis was conducted based on various patient characteristics, and the predictive value of the thickness was determined using ROC curve analysis. By providing the specific criteria for defining high-risk patients, readers can better understand the methodology used in this study. Results: The linear regression analysis showed a significant negative correlation between the thickness of the uterine muscle layer at placenta attachment and postpartum blood loss at 2 hours (t value = -6.9848, P = 1.33E-11 < .05). There was also a significant negative correlation between the thickness and hemoglobin changes before and after delivery (t value = -2.242, P = .026 < .05). These findings indicate a robust association between uterine muscle layer thickness and both postpartum blood loss and hemoglobin changes. ROC curve analysis revealed that the thickness of the uterine muscle layer at placenta attachment had predictive value for postpartum hemorrhage. This suggests that measuring the thickness of the uterine muscle layer can serve as a reliable predictor for identifying women at risk of postpartum hemorrhage. Additionally, stratified analysis showed that the thickness had significant predictive value in certain subgroups of patients. Conclusion: The findings of this study demonstrate that the thickness of the uterine muscle layer at placenta attachment is a critical indicator for predicting postpartum hemorrhage. Specifically, the study shows a robust negative correlation between uterine muscle layer thickness and postpartum blood loss, as well as significant predictive value for identifying high-risk patients for postpartum hemorrhage. These results have important practical implications for clinical practice. With early identification of high-risk groups based on uterine muscle layer thickness measurements, clinicians can implement interventions to reduce the incidence and severity of postpartum hemorrhage, which may lead to improved patient outcomes and reduced healthcare costs. Overall, this study provides a theoretical basis for the development of targeted prevention strategies and risk management protocols, which may help reduce serious complications of postpartum hemorrhage and improve maternal and neonatal health.

6.
Front Plant Sci ; 14: 1218914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868312

RESUMO

The BAHD acyltransferase family is a class of proteins in plants that can acylate a variety of primary and specialized secondary metabolites. The typically acylated products have greatly improved stability, lipid solubility, and bioavailability and thus show significant differences in their physicochemical properties and pharmacological activities. Here, we review the protein structure, catalytic mechanism, and phylogenetic reconstruction of plant BAHD acyltransferases to describe their family characteristics, acylation reactions, and the processes of potential functional differentiation. Moreover, the potential applications of the BAHD family in human activities are discussed from the perspectives of improving the quality of economic plants, enhancing the efficacy of medicinal plants, improving plant biomass for use in biofuel, and promoting stress resistance of land plants. This review provides a reference for the research and production of plant BAHD acyltransferases.

7.
Plants (Basel) ; 11(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432764

RESUMO

This study focused on the physiological regulation and mechanism of exogenous 5-aminolevulinic acid (5-ALA) in the late growth of P. heterophylla. In the middle of May, different concentrations of 5-ALA (0, 10, 20, 50 mg·L-1) were sprayed on the leaves. The effects of 5-ALA on tuberous root growth, antioxidant enzyme system, gas exchange, photosynthetic pigment contents and photosynthetic characteristics were measured from 23 May to 13 June. A concentration of 20 mg·L-1 of 5-ALA led to a significant increase in the yield of fresh root and biomass allocation at 38.12% and 25.07%, respectively, in comparation with the control (0 mg·L-1). The moderate concentration of 5-ALA statistically stimulated antioxidation activities. 5-ALA treatment enhanced photosynthetic activity and reduced photodamage. Compared to the control, there were increases in the chlorophyll fluorescence parameters of P. heterophylla under 5-ALA treatment. Moreover, 20 mg·L-1 of 5-ALA significantly changed the kinetic parameters of fluorescence. It enhanced the light absorption and distribution efficiency of PSII and the activities of leaves, resulting in alleviating photoinhibition by the excess excitation energy. The correlation indicated that there was a significant positive correlation between the yield of tuberous roots and biomass allocation, Pn and catalase (CAT), and a negative correlation between the yield of tuberous roots and malondialdehyde (MDA). The appropriate 5-ALA concentration in the late growth stage of P. heterophylla effectively enhanced the net photosynthetic capacity, mainly resulting from the enhancement of PSII photochemical activity to promote the increases in excitation energy absorption, capture and electron transfer efficiency of the leaves. Finally, 5-ALA treatment can increase the photochemical activity of PSII in the whole leaf and ultimately delay the senescence of P. heterophylla.

8.
Molecules ; 26(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576955

RESUMO

Taxus mairei is an important source for industrial extraction of taxol in China. However, the standard and steps of extraction are currently not uniform, which seriously affects the taxol yield. In the present study, the influence of four factors (methanol concentration, solid-liquid ratio, ultrasonic extraction temperature, and ultrasonic extraction time) on the taxol yield was successively explored in T. mairei. A response surface methodology (RSM) was used to optimize the extraction process based on the single-factor experiments above. The optimal conditions were as follows: methanol concentration was 90%, solid-liquid ratio was 1:15 (g/mL), ultrasonic extraction temperature was 40 °C and ultrasonic extraction time was 60 min. Moreover, the twigs and needles from T. mairei with different tree ages were treated by the optimum extraction process, which further revealed temporal and spatial distribution of taxol in the reproducible tissues. Interestingly, the taxol content was relatively higher in needles of T. 'Jinxishan' (a cultivar from T. mairei with yellow aril, FY), but was less in FY twigs. The accumulation of taxol in twigs and leaves of females (with red aril, FR) was significantly higher than that of males (M); however, the content showed a decreasing trend with the increasing tree ages. Therefore, it is suitable to increase the proportion of female trees especially the FY leaves as raw materials for the industrial production of taxol from T. mairei, and the tree ages should be better controlled at 3-7 years.


Assuntos
Fracionamento Químico/métodos , Paclitaxel/análise , Paclitaxel/isolamento & purificação , Taxus/química , Metanol/química , Folhas de Planta/química , Análise Espaço-Temporal , Taxus/fisiologia , Temperatura , Fatores de Tempo
9.
Plants (Basel) ; 9(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824237

RESUMO

Flowering crabapples are a series of precious ornamental woody plants. However, their growth and development are inhibited in the subtropical regions due to the weak photosynthesis under high-temperature environment in the summer. Chlorophyll a fluorescence transient and 2-dimensional electrophoresis (2-DE) analyses were conducted to investigate the response characteristics of photosynthesis under simulated 38 °C heat stress in leaves of Malus. 'Prairifire', a spring-red leaf cultivar of flowering crabapple with strong thermal adaptability. In the present study, the net photosynthetic rate (Pn) was significantly decreased during the heat shock process, which showed a similar trend to the stomatal conductance (Gs), indicating a sensitive stomatal behavior to heat stress. Moreover, an efficient reaction center in photosystem II (PSII), and a functionally intact oxygen-evolving complex (OEC) conferred strong photosynthetic adaptability under heat stress. The higher level of transketolase (TK) under 48-h heat shock treatment was considered a protective mechanism of photosynthetic apparatus. However, heat stress inhibited the functions of light harvesting complex II (LHCII), electron transport in PSII, and the levels of key enzymes in the Calvin cycle, which were considered as the reasons causing an increase in the proportion of non-stomatal restrictions.

10.
J Plant Physiol ; 240: 153017, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31376640

RESUMO

The effects of different doses of NaCl on the expression profiles of genes involved in the mitochondrial electron transport chain (miETC), H2O2 and O2- levels, and antioxidant enzymes and amino acid metabolism were investigated in the leaves of poplar (Populus deltoides x Populus euramericana 'Nanlin 895'). In the miETC, complexes II and III and bypasses of the cytochrome c pathway including AOX and UCP displayed higher transcript abundance, whereas COX6b encoding cytochrome c oxidase were suppressed at 200 and 400 mM. H2O2 accumulated at 200 mM NaCl but O2- was generated at 400 mM. Accordingly, CAT was enhanced at 200 and 400 mM, while G-POD strengthened only at 400 mM. In addition, cysteine was reduced at 400 mM but did not change at 200 mM, although methionine was accumulated at 200 mM but not altered at 400 mM. Exogenous cysteine accumulated H2S and methionine increased ACC at 200 mM NaCl. At 400 mM NaCl, cysteine elevated the expression of CGS encoding cystathionine gamma-synthase and MS2 encoding methionine synthase as well as ACC and H2S levels, and methionine increased ACC content with repressed CGS and MS2. Moreover, exogenous KCN decreased cysteine levels, with an augment in H2S and up-regulation of CYS C1 encoding ß-cyanoalanine synthase at all salinity conditions, whereas antimycin A (AA) and salicylhydroxamic acid (SHAM) affected neither the levels of cysteine or H2S, nor the CYS C1 expression. However, neither KCN, AA nor SHAM affected ACC content. AOX1b was induced both by exogenous cysteine and methionine as well as KCN and AA but suppressed by SHAM at 200 and 400 mM NaCl, in negative correlation with MDA content. These results suggest that poplar leaf evolved diverse strategies in amino acid metabolism of manipulating the AOX pathway to defend against different levels of salt stress.


Assuntos
Cisteína/metabolismo , Metionina/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Salinidade , Cloreto de Sódio/farmacologia , Relação Dose-Resposta a Droga , Folhas de Planta/metabolismo , Populus/efeitos dos fármacos , Plântula/metabolismo
11.
ScientificWorldJournal ; 2018: 1219364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30111987

RESUMO

Investigating factors involved in the alleviation of the toxic effects of heavy metals (HMs) on plants is regarded as one of the important research concerns in the environmental field. The southern regions of China are severely impacted by human-induced heavy metal (HM) contamination, which poses an impediment to growth and productivity of bamboo (Indocalamus latifolius) plants. This necessitates the investigation of the effects of HMs on growth and physiological properties of bamboo. Therefore, the aim of the study was to evaluate some gas exchange and growth parameters in two-year-old bamboo species under HMs stress. A greenhouse-based experiment was conducted at Nanjing Forestry University, where the bamboo plant was treated with three HMs (Cu, Pb, and Zn) at four different concentrations (0, 500, 1000, and 2000 mg kg-1). The results illustrated that excessive HMs (1000 and 2000 mg kg-1) triggered a decline in a number of photosynthetic-related indices including the rate of photosynthesis (µmol CO2 m-2 s-1), intercellular CO2 concentration (µmol CO2 mol-1), conductance to H2O (mol H2O m-2 s-1), and net assimilation as well as transpiration. Morphological indices were also depressed as a result of the adverse influence of HMs, leading to decreased shoot length (10 to 73%) and reduced number of emerged plants (6 to 57%). Also, the results indicated that Pb had the greatest harmful impact on the growth indices.


Assuntos
Metais Pesados/toxicidade , Fotossíntese/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Cobre/toxicidade , Monitoramento Ambiental , Chumbo/toxicidade , Poaceae/fisiologia , Zinco/toxicidade
12.
Plant Cell Rep ; 37(11): 1547-1555, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30056500

RESUMO

KEY MESSAGE: The T.118 and T.406 seedlings showed strong adaptability under Cd concentrations ≤ 50 µM. The mechanisms of photoprotection in T.118 and T.406 differed in high-Cd concentrations. To explore the physiological response characteristics of Taxodium hybrids to cadmium (Cd) stress and provide basis for screening of Cd-tolerant species, the hydroponic cultivation of T.118 and T.406 seedlings was conducted to demonstrate the effects of Cd stress on seedling growth, antioxidant system, and chlorophyll fluorescence parameters. After 35 days of Cd stress at a concentration ≤ 50 µM, the dry weight biomass of the two clones did not significantly differ from that of the control. T.406 exhibited a significant increase in POD activity compared to T.118 and maintained high SOD activity after exposure to high concentrations of Cd, whereas MDA levels showed little changes. Under low-Cd stress, chlorophyll content and fluorescence parameters remained stable, especially for T.406. Under high-Cd concentration stress, the above parameters were lower than the control, with a more significant decrease in T.118 than in T.406. The non-photochemical quenching coefficient (NPQ) of both clones increased with increasing Cd concentration. T.118 showed a greater increase than T.406, particularly under high-Cd concentration stress. The T.118 and T.406 seedlings adapted to low-Cd concentration stress by enhancing their antioxidant enzyme activity to maintain the balance of reactive oxygen metabolism and reduce cellular damage. The photochemical activity of mesophyll cells remained high to maintain photosynthetic capacity and normal seedling growth. T.406 showed stronger resistance to Cd than T.118. T.406 prevented photodamage by promoting the photochemical utilization of the excitation energy and maintaining a strong antioxidant stress ability. Enhancement of heat dissipation capability may be the main photoprotection mechanism of T.118.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Fotossíntese/efeitos dos fármacos , Taxodium/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Fluorescência , Hidroponia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Estresse Fisiológico , Taxodium/crescimento & desenvolvimento , Taxodium/fisiologia
13.
Biomed Res Int ; 2018: 8492898, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850578

RESUMO

The increased contaminants caused by anthropogenic activities in the environment and the importance of finding pathways to reduce pollution caused the silicon application to be considered an important detoxification agent. Silicon, as a beneficial element, plays an important role in amelioration of abiotic stress, such as an extreme dose of heavy metal in plants. There are several mechanisms involved in silicon mediation in plants, including the reduction of heavy metal uptake by plants, changing pH value, formation of Si heavy metals, and stimulation of enzyme activity, which can work by chemical and physical pathways. The aim of this paper is to investigate the major silicon-related mechanisms that reduce the toxicity of heavy metals in plants and then to assess the role of silicon in increasing the antioxidant enzyme and nonenzyme activities to protect the plant cell.


Assuntos
Metais Pesados/toxicidade , Plantas/metabolismo , Silício/farmacologia , Estresse Fisiológico , Glutationa/metabolismo , Plantas/efeitos dos fármacos , Plantas/enzimologia , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo
14.
J Basic Microbiol ; 56(6): 608-16, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27143295

RESUMO

To investigate the effects of water column nutrient loading on epiphytic bacteria, we determined the abundance and community composition of epiphytic bacteria on the submerged macrophyte Vallisneria natans (Lour.) Hara during the growth season (June-October) under four different nutrient concentrations (nitrogen (N)-phosphorus (P) in mg L(-1) : 0.5-0.05, 1.0-0.1, 5.0-0.5, 10.0-1.0; hereafter NP-1, NP-2, NP-3, NP-4, respectively), using epifluorescence microscopy method and terminal restriction fragment length polymorphism (T-RFLP) analysis, respectively. Relative to low nutrient conditions (NP-1), there was no significant effect on the epiphytic bacterial community, and even a decrease in the number of epiphytic bacteria, which linked to the well growth status of host macrophytes at moderate nutrient conditions (NP-2). However, further nutrient enrichment induced significant increase in the abundance of epiphytic bacteria, and marked changes in the community structures of epiphytic bacteria. Furthermore, at high nutrient conditions, epiphytic bacterial communities varied widely temporally, and were not stable compared with those at the lower nutrient conditions. These results indicated that the effects of nutrient enrichment on epiphytic bacteria were nonlinear and dependent on the nutrient concentrations in the water.


Assuntos
Bactérias/crescimento & desenvolvimento , Eutrofização , Hydrocharitaceae/microbiologia , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Bactérias/metabolismo , Biomassa , Ecossistema , Polimorfismo de Fragmento de Restrição
15.
ScientificWorldJournal ; 2015: 756120, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25688377

RESUMO

Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.


Assuntos
Poluentes Ambientais/análise , Inativação Metabólica/fisiologia , Metais Pesados/análise , Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Quelantes/metabolismo , Metalotioneína/metabolismo , Metais Pesados/farmacocinética , Metais Pesados/toxicidade , Micorrizas/metabolismo , Plantas/metabolismo , Plantas/microbiologia
16.
Huan Jing Ke Xue ; 30(8): 2425-31, 2009 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-19799312

RESUMO

Perchlorate is a new emerging persistent pollutant, while no studies about its effects on plants have been reported both home and abroad. In order to explore the effects of perchlorate on growth and physiology of aquatic plant, Alternanthera philoxeroides were treated by 1/20 Hoagland nutrient solution with different concentrations (0, 1, 5, 20, 100, 500 mg/L) of ClO4- under the controlled conditions. The results showed as follow. (1) Under perchlorate treatment, relative growth yield,dry weight of root,shoot and leaves were inhibited at different degrees, in which root biomass under different treatments showed significant difference to the control. After treatment for 40 d, relative growth yield of different treatments at concentration from 1 mg/L to 500 mg/L were about 61.6%, 60.8%, 53.1%, 20.4% and 3.3% separately of the control. And the order of variation coefficients of biomass in different organ were as follows: leaf > root biomass > stem; the relationship of biomass allocation in different organs of Alternanthera philoxeroides under perchlorate treatment changed, and the proportion of stem biomass increased,while leaf decreased, in which 100 and 500 mg/L ClO4- treatment showed significant difference to the control. (2) Under perchlorate treatment, young leaves of Alternanthera philoxeroides presented injury symptoms (such as parietal roiling reversely, leaf edge getting black and withered etc), and the damaged degree of Alternanthera philoxeroides increased with the increase of treatment concentration and time. (3) Under perchlorate treatment, the relative chlorophyll content (SPAD value), primary maximal PSII efficiency(Fv/Fm), efficiency of excitation capture by open PSII centre (F'v,/F'm), actual photochemical efficiency of PSII (phi(PS II)), electron transport rate (ETR), maximal electron transport rate(ETR ,) and other indexes were inhibited at different degrees. SPAD and chlorophyll fluorescence parameters (phi(PS II)) etc. could be used as sensitive physiological indexes to reflect the effects of perchlorate stress. The results suggest that perchlorate treatment can damage the photosynthetic system and leaf, decrease photochemical efficiency, and inhibit growth of Alternanthera philoxeroides. Leaf and root show a higher sensitivity to perchlorate,while stem with a lower sensitivity.


Assuntos
Amaranthaceae/crescimento & desenvolvimento , Clorofila/metabolismo , Poluentes Ambientais/toxicidade , Percloratos/toxicidade , Fotossíntese/fisiologia , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo
17.
Ying Yong Sheng Tai Xue Bao ; 19(6): 1179-84, 2008 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-18808005

RESUMO

With Indocalamus barbatus as test material, the effects of silicon on the relative content of chlorophyll, diurnal variations of photosynthesis, and chlorophyll fluorescence were examined under simulated acid rain (pH 3.0) stress. The results showed that under acid rain stress, 20 and 500 mg x L(-1) of Na2SiO3 could prohibit the decrease of the relative content of chlorophyll to some extent; 100 mg x L(-1) of Na2SiO3 could get best effect, with the relative chlorophyll content being 22.7% higher than the control; while 500 mg x L(-1) of Na2SiO3 didn't have any effect. Under the stress, the midday depression of photosynthesis became more serious. The average daily net photosynthetic rate (Pn), stomatal limitation value (Ls), and stomata conductance (Gs) were all decreased significantly, while the intercellular CO2 concentration (Ci) increased. After treated with 20-100 mg x L(-1) of Na2SiO3, the Pn, Ls, and Gs increased to some extent while Ci decreased, and 100 mg x L(-1) of Na2SiO3 was most effective, with the average daily Pn increased by 39.2%. The maximum fluorescence of dark adaptation (Fm), maximal photochemical efficiency (Fv/Fm), potential activity (Fv/Fo), effective photochemical efficiency (Fv'/Fm'), maximum fluorescence of light adaptation (Fm') of PSII, photochemical quenching (qp), non-photochemical quenching (qN), and actual photochemical efficiency of PSII (PhiPSII) were all decreased obviously under simulated acid rain stress, but the minimum fluorescence of dark adaptation (Fo) and the minimum fluorescence of light adaptation (Fo') increased. 100 mg x L(-1) of Na2SiO3 could restrain the changes of fluorescence parameters obviously, with the Fv/Fm, Fv/Fo, Fv'/Fm' and PhiPSII increased by 35.2%, 146.2%, 55.0% and 24.3%, respectively, compared with the control. It was suggested that applying appropriate concentration of exogenous silicon to I. barbatus could efficiently relieve the decrease of its photosynthetic activity and the damage of its photosynthetic system caused by acid rain, and thus, improve its photosynthetic ability under the stress.


Assuntos
Chuva Ácida , Fotossíntese/fisiologia , Poaceae/fisiologia , Silício/farmacologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Poaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...